POLYNOMIALS (LECTURE 4)
POLYNOMIALS
LESSON-4, 
Good Morning  😊
Let us go through the guidelines for  the  blog once again:
-      take your SET-A Mathematics 📖
-   Our📃. It will be 👍, if you use good presentation and cursive 📃
-   Make a column on the RHS, if you need to do any rough work
-     Leave ⓶ lines where you finished yesterday’s work and draw a horizontal line
-     Write today's 📆
Let us go through the guidelines for  the  blog once again:
·         Red,  is to be 🖉 in your 📖
·         Blue is to be 👀  by ➤
·         Green is to be 💬🖉📗 for home work
- take your SET-A Mathematics 📖
- Our📃. It will be 👍, if you use good presentation and cursive 📃
- Make a column on the RHS, if you need to do any rough work
- Leave ⓶ lines where you finished yesterday’s work and draw a horizontal line
- Write today's 📆
Learning Outcomes covered so far: 
-recall the terms and definitions related to algebra.
-The geometrical representations of linear and quadratic polynomials and the geometrical meaning of their zeroes.
-find the zeroes of a quadratic polynomial 
-verify the relationship between  zeroes and the coefficients .
-recall what is sum and product of zeroes of a quadratic polynomial.
-Form a quadratic polynomial when sum and product of zeroes are given.
Learning Outcomes covered so far: 
-recall the terms and definitions related to algebra.
-The geometrical representations of linear and quadratic polynomials and the geometrical meaning of their zeroes.
-find the zeroes of a quadratic polynomial 
-verify the relationship between  zeroes and the coefficients .
-recall what is sum and product of zeroes of a quadratic polynomial.
-Form a quadratic polynomial when sum and product of zeroes are given.
Please write the following learning outcomes in your note books 
I will be able to:
- identify the relation between zeroes & coefficients of a cubic polynomial
- apply the above relation to construct  a polynomial
Observe the image given below👇
Q1
Answer the following questions based on the above example:
Q2) The zeroes (from what you see in Q1), for the given polynomial are α =____, β = ____ & γ = ____  
                           {Hint: The abscissa of the points where the intersects / meets the X-axis}
Q3) Simplify 2(x + 1) (x - 2)(x - 3)  
                           {Hint: Find the product}
A3)  2x³ - 8x² + 2x  + 12  {Hint: Show steps of the product}
Q4) How many different polynomials are possible with the zeroes that you have found out in Q2 ?
Q5) If a curve passes through (-1,0), (2,0), (3,0) & (4,30), then write the cubic polynomial.
A5)  Step-1: The zeroes of the cubic polynomial are:
          α =____, β = ____ & γ = ____ 
                   {Hint: The abscissa of the points where the ordinate is 0}
        Step-2: Write the factors of the polynomial, using the     
                      zeroes
        p(x) = k  (             )(           )(           )
                   {Hint: If a is a zero, then (x - a) is a factor, if  -a is a zero, then (x + a) is a factor}
        Step-3: Substitute the 4th given point (4,30) in the polynomial constructed in Step-2 & solve "k"     
                      zeroes
        30 =  k (             )(           )(           )
                   {Hint: If a is a zero, then (x - a) is a factor, if  -a is a zero, then (x + a) is a factor}
        Step-4: Substitute the value of k in the polynomial constructed in Step-2 and simplify it
              p(x) = __  (             )(           )(           )
                      =  ?
Q6) Are the zeroes given in Q2 & Q5 same ? (Yes / No) 
Q7) How many zeroes will a linear polynomial have ? (1 / 2 /3)
Q8) How many zeroes will a quadratic polynomial have ? 
                                             (1 / 2 / 3 )
Q9) How many zeroes will a cubic polynomial have ? (1 / 2 /3)
RECALL 👇
If α, β are zeroes / roots of p(x) = a x2 + bx + c, then
               
Q10) Is there a relationship between the zeroes & its coefficients for a cubic polynomial ? (Yes / No)
Very Important Note
As much the degree, 
those many the zeroes!
 As many the zeroes, 
those many relations!
Q11)  If , p(x) = 2x³ - 8x² + 2x  + 12, answer the following:
   (i)  a = ____ , b = ____ , c = ____ , d = ____
           {Hint: the coefficients of x³, x² , x & constant respectively}
   (ii)  α =____, β = ____ & γ = ____  
           {Hint: Refer to Answer 2}
     (iii)  -b/a = ____ 
           {Hint: Substitute the values from (i)}
     (iv) α + β + γ = ____ 
           {Hint: Substitute the values from (ii)}
     (v) α + β + γ = -b/a    {Hint: Compare the answers in (iii) & (iv)}
         {This is the first relation: SUM OF THE ZEROES}
           
    (vi)  c/a = ____ 
           {Hint: Substitute the values from (i)}
     (vii) αβ + βγ + γα = ____ 
           {Hint: Substitute the values from (ii)}
     (viii) αβ + βγ + γα = c/a    {Hint: Compare the answers in (vi) & (vii)}
         {This is the second relation: SUM OF THE PRODUCT OF ZEROES, TAKEN TWO AT A TIME}
Please write the following learning outcomes in your note books 
I will be able to:
- identify the relation between zeroes & coefficients of a cubic polynomial
- apply the above relation to construct a polynomial
Observe the image given below👇
Q1
Answer the following questions based on the above example:
Q2) The zeroes (from what you see in Q1), for the given polynomial are α =____, β = ____ & γ = ____  
                           {Hint: The abscissa of the points where the intersects / meets the X-axis}
Q3) Simplify 2(x + 1) (x - 2)(x - 3)  
                           {Hint: Find the product}
A3)  2x³ - 8x² + 2x  + 12  {Hint: Show steps of the product}
Q4) How many different polynomials are possible with the zeroes that you have found out in Q2 ?
Q5) If a curve passes through (-1,0), (2,0), (3,0) & (4,30), then write the cubic polynomial.
A5)  Step-1: The zeroes of the cubic polynomial are:
          α =____, β = ____ & γ = ____ 
                   {Hint: The abscissa of the points where the ordinate is 0}
        Step-2: Write the factors of the polynomial, using the     
                      zeroes
        p(x) = k  (             )(           )(           )
                   {Hint: If a is a zero, then (x - a) is a factor, if  -a is a zero, then (x + a) is a factor}
        Step-3: Substitute the 4th given point (4,30) in the polynomial constructed in Step-2 & solve "k"     
                      zeroes
        30 =  k (             )(           )(           )
                   {Hint: If a is a zero, then (x - a) is a factor, if  -a is a zero, then (x + a) is a factor}
        Step-4: Substitute the value of k in the polynomial constructed in Step-2 and simplify it
              p(x) = __  (             )(           )(           )
                      =  ?
Q6) Are the zeroes given in Q2 & Q5 same ? (Yes / No) 
Q7) How many zeroes will a linear polynomial have ? (1 / 2 /3)
Q8) How many zeroes will a quadratic polynomial have ? 
                                             (1 / 2 / 3 )
Q9) How many zeroes will a cubic polynomial have ? (1 / 2 /3)
RECALL 👇
If α, β are zeroes / roots of p(x) = a x2 + bx + c, then
Q10) Is there a relationship between the zeroes & its coefficients for a cubic polynomial ? (Yes / No)
Very Important Note
As much the degree, 
those many the zeroes!
 As many the zeroes, 
those many relations!
Q11)  If , p(x) = 2x³ - 8x² + 2x  + 12, answer the following:
   (i)  a = ____ , b = ____ , c = ____ , d = ____
           {Hint: the coefficients of x³, x² , x & constant respectively}
   (ii)  α =____, β = ____ & γ = ____  
           {Hint: Refer to Answer 2}
     (iii)  -b/a = ____ 
           {Hint: Substitute the values from (i)}
     (iv) α + β + γ = ____ 
           {Hint: Substitute the values from (ii)}
     (v) α + β + γ = -b/a    {Hint: Compare the answers in (iii) & (iv)}
         {This is the first relation: SUM OF THE ZEROES}
    (vi)  c/a = ____ 
           {Hint: Substitute the values from (i)}
     (vii) αβ + βγ + γα = ____ 
           {Hint: Substitute the values from (ii)}
     (viii) αβ + βγ + γα = c/a    {Hint: Compare the answers in (vi) & (vii)}
         {This is the second relation: SUM OF THE PRODUCT OF ZEROES, TAKEN TWO AT A TIME}
Q13) Refer to NCERT, Ex. 2.4 (Q2)





 
Good morning ma'am.Not understood this way.
ReplyDeleteGood morning ma'am.Not understood this way.
ReplyDeleteGood morning ma’am
ReplyDeleteI just had a doubt from previous blog: How can there be three cases while making a parabola as there are only two zeroes of a quadratic polynomial and it cannot be lesser than that
This comment has been removed by the author.
ReplyDeleteGood morning mam
ReplyDeleteSanskar thakur
X-B
Good morning
ReplyDeleteSaim QURESHI
X-B
checking
ReplyDelete