QUADRATIC EQUATIONS( LECTURE 5 )



Quadratic Equations 

Good Morning 😎

Let us go through the guidelines for  the  blog once again:




·         Red,  is to be 🖉 in your 📖
·         Blue is to be 👀  by 
·         Green is to be 💬🖉📗 for home work

  •      take your SET-A Mathematics 📖
  •   Our📃. It will be 👍, if you use good presentation and cursive 📃
  •   Make a column on the RHS, if you need to do any rough work
  •     Leave  lines where you finished yesterday’s work and draw a horizontal line
  •     Write today's 📆


Learning outcomes, covered so far:

1. recall general form of a quadratic equation
2. identify  any  given equation as quadratic .
3. form quadratic equations from word problems . 
4. solve quadratic equations by factorization method hence, the roots of the equation.
5. comprehend and translate the word problems as quadratic equations and solve them  using factorization method.
6. Comprehend quadratic formula
7. Apply quadratic formula to find roots of the quadratic equation

Today's learning outcome is:
I will be able to:
1. Reduce the given equation to a quadratic equation
2. Apply quadratic formula to find roots of the quadratic equation
                               





Please ➤




RECALL:

Can also be interpreted as:




Q1) Find the roots of the quadratic equation using the quadratic formula:
x + 1/x = 3, x ≠ 0

A1) x + 1/x = 3    {Given}
     ⇒  (x² + 1)/x = 3  {Take LCM}
     ⇒  (x² + 1) = 3x  {Take x to RHS numerator & multiply}
     ⇒  x² + 1 - 3x = 0  {Take 3x to RHS}
     ⇒  x² - 3x + 1 = 0  {Rearrange}

Step-1: a = ___ , b = ____ , c =____
        {Hint: Coefficients x² , x & constant}
Step-2: d = (__) - 4(__)(__) = ____
        {Hint: Coefficients x² , x & constant}
Step-3: if d < 0 then , Answer = "No Real Roots" , else got to STEP-4

Step-4: α = {-(__) + √__} / 2(__)  = ____
             β = {-(__) - √__} / 2(__)  = ____
                          {Hint: input the values of b, d and a in that order for both α & β, refer to
the formula in the picture give above}

Q2) Find the roots of the quadratic equation using the quadratic formula:
1/x - 1/(x-2) = 3, x ≠ 0,2

A2) 1/x + 1/(x-2) = 3    {Given}
     ⇒  (x - 2 + x)/x(x-2) = 3  {Take LCM}
     ⇒  (2x - 2) = 3x(x - 2)  {Take x to RHS numerator & multiply}
     ⇒  2x - 2 = 3x² - 6x  {simplify RHS
     ⇒  x² - 8x + 2 = 0  {Rearrange}

Step-1: a = ___ , b = ____ , c =____
        {Hint: Coefficients x² , x & constant}
Step-2: d = (__) - 4(__)(__) = ____
        {Hint: Coefficients x² , x & constant}
Step-3: if d < 0 then , Answer = "No Real Roots" , else got to STEP-4

Step-4: α = {-(__) + √__} / 2(__)  = ____
             β = {-(__) - √__} / 2(__)  = ____
                          {Hint: input the values of b, d and a in that order for both α & β, refer to
the formula in the picture give above}

REFLECTION: 
You learnt this word "caveat" yesterday.
The lock down due to Covid-19
has been a boon to the nature,
as the nature is 
in the self healing process.
This has given us 
a caveat
to be responsible 
in our actions towards nature
Please read about SDG-17

HOME WORK:
Ex. 4.3 Q3 + Quadratic Eq-2 assignment sent (please access through your student login on redox app or school website)


Take Care & keep smiling




Comments

Post a Comment

Popular posts from this blog

STATISTICS: MEDIAN 1(LECTURE 5)

STATISTICS: MEDIAN 2(LECTURE 6)

STATISTICS (LECTURE 7)