POLYNOMIALS (LECTURE 5)

POLYNOMIALS


LESSON-5
Good Morning  😊  



Let us go through the guidelines for  the  blog once again:

·         Red,  is to be 🖉 in your 📖
·         Blue is to be 👀  by 
·         Green is to be 💬🖉📗 for home work

  •      take your SET-A Mathematics 📖
  •   Our📃. It will be 👍, if you use good presentation and cursive 📃
  •   Make a column on the RHS, if you need to do any rough work
  •     Leave  lines where you finished yesterday’s work and draw a horizontal line
  •     Write today's 📆


Learning Outcomes covered so far:
 
-recall the terms and definitions related to algebra.
-The geometrical representations of linear and quadratic polynomials and the geometrical meaning of their zeroes.
-find the zeroes of a quadratic polynomial 
-verify the relationship between  zeroes and the coefficients .
-recall what is sum and product of zeroes of a quadratic polynomial.
-Form a quadratic polynomial when sum and product of zeroes are given.
-Identify the relation between zeroes & coefficients of a cubic polynomial
-Apply the above relation to construct  a polynomial

Please write the following learning outcomes in your note books 

I will be able to:

  • Apply the relationship between zeroes and coefficients of a polynomial to various forms of algebraic expressions.

Q1) If α & β are zeroes of 2x² - 5x + 3, then find the values of α² + β².


A1) Step-1 : a = ___, b = ___, c = ___ 
                              {Hint : write the coefficients of the given polynomial}

        Step-2 : α + β = ___, αβ = ___ 
                              {Hint : use the relationship equations}

        Step-3 : (α + β)² = α² + β² + 2αβ 
                      ⇒(α + β)² - 2αβ α² + β²   → (equation 1)
                              {Hint : use the algebraic identity and then transfer 2αβ to LHS}

        Step-4 : (___)² - 2(___) α² + β² 
                              {Hint : substitute values from Step-2 in equation 1 & solve}

Q2) If α & β are zeroes of 2x² - 5x + 3, then find the values of 1/2α + 1/2β.

A2) Step-1 : a = ___, b = ___, c = ___ 
                              {Hint : write the coefficients of the given polynomial}

        Step-2 : α + β = ___, αβ = ___ 
                              {Hint : use the relationship equations}

        Step-3 : 1/2α + 1/2β = (β + α)/2αβ → (equation 1)
                              {Hint : use the LCM}

        Step-4 : 1/2α + 1/2β = (___)/2(__) 
                              {Hint : substitute values from Step-2 in equation 1 & solve}

Q3) If α & β are zeroes of 2x² - 5x + 3, then find the values of α/β + β/α.

A3) Step-1 : a = ___, b = ___, c = ___ 
                              {Hint : write the coefficients of the given polynomial}

        Step-2 : α + β = ___, αβ = ___ 
                              {Hint : use the relationship equations}

        Step-3 : α/β + β/α = (α² + β²)/αβ → (equation 1)
                              {Hint : use the LCM}

        Step-4 : α/β + β/α = (_____)/(__)  
                              {Hint : substitute value of αβ from Step-2 & value of (α² + β²) from  
                                Q1 & solve}

Q4) If α & β are zeroes of 2x² - 5x + 3, then find the values of α³ + β³.

A4) Step-1 : a = ___, b = ___, c = ___ 
                              {Hint : write the coefficients of the given polynomial}

        Step-2 : α + β = ___, αβ = ___ 
                              {Hint : use the relationship equations}

        Step-3 : (α + β)³ = α³ + β³ + 3αβ(α + β) 
                      ⇒(α + β)³ - 3αβ(α + β) α³ + β³ → (equation 1)
                              {Hint : use the algebraic identity and then transfer 3αβ(α + β) to 
                                                                                                      LHS}

        Step-4 : (___)³ - 3(___)(___) α³ + β³ 
                              {Hint : substitute values from Step-2 in equation 1 & solve}

Q5) If α & β are zeroes of 2x² - 5x + 3, then find the values of α⁴ + β.

A5) Step-1 : a = ___, b = ___, c = ___ 
                              {Hint : write the coefficients of the given polynomial}

        Step-2 : α + β = ___, αβ = ___ 
                              {Hint : use the relationship equations}

        Step-3 : (α + β) = ((α + β)²)² 
                                  = (α² + β² + 2αβ)² 
       ⇒(α + β) = α + β⁴ + 4α²β² + 4α³β + 4αβ³ + 2α²β²

       ⇒(α + β) = α + β⁴ + 6(αβ)² + 4αβ(α² + β²)

       ⇒(α + β) - 6(αβ)² - 4αβ(α² + β²)α + β→ (equation 1)
                              {Hint : use the algebraic identity and then transfer 
6(αβ)² , 4αβ(α² + β²) to LHS}

        Step-4 : (____) - 6(__)² - 4(__)(____)α + β
                              {Hint : substitute values from Step-2 & from Q1, in equation 1 & 
                                                solve}


Q6) If α & β are zeroes of 2x² - 5x + 3, then find the values of α - β.

A6) Step-1 : a = ___, b = ___, c = ___ 
                              {Hint : write the coefficients of the given polynomial}

        Step-2 : α + β = ___, αβ = ___ 
                              {Hint : use the relationship equations}

        Step-3 : (α - β)² = α² + β² - 2αβ
                                        {Hint : use the algebraic identity}
                   
                      ⇒(α - β)² = α² + β² 2αβ - 2αβ - 2αβ 
                                            {Hint : add 2αβ and subtract 2αβ}
                      
                      ⇒(α - β)² = (α² + β² + 2αβ) - 4αβ
                              {Hint : Rearranging}

                                 (α - β)² = (α + β)² - 4αβ  → (equation 1)
                                              {Hint : use the algebraic identity}

        Step-4 : (α - β)² = (___)² - 4(___) 
                              {Hint : substitute values from Step-2 in equation 1 & solve. After that take square root of the obtained value to get the value for (α - β)}

Tomorrow i  am going to take a google meet  with you to explain lecture 4 & 5. plz be on time. link i will give you through whatsapp. tomorrow have single period,so  till 7:35am.

HOME WORK: 
Q7)  If α & β are zeroes of x² - x - 6, then find the values of :
(i) α² + β²
(ii) 1/2α + 1/2β
(iii) α/β + β/α
(iv) α³ + β³
(v) α⁴ + β
(vi)  α - β

Take Care of yourselves!
Help the Family at home!
Greet Everyone at home with your cheering smile

No comments:

Comments

  1. tomorrrow google meet in the maths period to learn cubic polynomial. be on time. after 7:35am, no entry.

    ReplyDelete
  2. It will be good if you give the google meet link on blog only as my device having whattsapp is not working.🙏🙏

    ReplyDelete

Post a Comment

Popular posts from this blog

STATISTICS: MEDIAN 1(LECTURE 5)

PROBABILITY ( LECTURE 3)

STATISTICS: MEDIAN 2(LECTURE 6)