POLYNOMIALS (LECTURE 5)
POLYNOMIALS
LESSON-5
Good Morning 😊
Let us go through the guidelines for the blog once again:
POLYNOMIALS
LESSON-5
Good Morning 😊
Good Morning 😊
Let us go through the guidelines for the blog once again:
· Red, is to be 🖉 in your 📖
· Blue is to be 👀 by ➤
· Green is to be 💬🖉📗 for home work
- take your SET-A Mathematics 📖
- Our📃. It will be 👍, if you use good presentation and cursive 📃
- Make a column on the RHS, if you need to do any rough work
- Leave ⓶ lines where you finished yesterday’s work and draw a horizontal line
- Write today's 📆
- take your SET-A Mathematics 📖
- Our📃. It will be 👍, if you use good presentation and cursive 📃
- Make a column on the RHS, if you need to do any rough work
- Leave ⓶ lines where you finished yesterday’s work and draw a horizontal line
- Write today's 📆
Learning Outcomes covered so far:
-recall the terms and definitions related to algebra.
-The geometrical representations of linear and quadratic polynomials and the geometrical meaning of their zeroes.
-find the zeroes of a quadratic polynomial
-verify the relationship between zeroes and the coefficients .
-recall what is sum and product of zeroes of a quadratic polynomial.
-Form a quadratic polynomial when sum and product of zeroes are given.
-Identify the relation between zeroes & coefficients of a cubic polynomial
-Apply the above relation to construct a polynomial
Learning Outcomes covered so far:
-recall the terms and definitions related to algebra.
-The geometrical representations of linear and quadratic polynomials and the geometrical meaning of their zeroes.-find the zeroes of a quadratic polynomial
-verify the relationship between zeroes and the coefficients .
-recall what is sum and product of zeroes of a quadratic polynomial.
-Form a quadratic polynomial when sum and product of zeroes are given.
-Identify the relation between zeroes & coefficients of a cubic polynomial-Apply the above relation to construct a polynomial
Please write the following learning outcomes in your note books
I will be able to:
- Apply the relationship between zeroes and coefficients of a polynomial to various forms of algebraic expressions.
I will be able to:
- Apply the relationship between zeroes and coefficients of a polynomial to various forms of algebraic expressions.
Q1) If α & β are zeroes of 2x² - 5x + 3, then find the values of α² + β².
Q1) If α & β are zeroes of 2x² - 5x + 3, then find the values of α² + β².
A1) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α + β)² = α² + β² + 2αβ
⇒(α + β)² - 2αβ = α² + β² → (equation 1)
{Hint : use the algebraic identity and then transfer 2αβ to LHS}
Step-4 : ⇒(___)² - 2(___) = α² + β²
{Hint : substitute values from Step-2 in equation 1 & solve}
Q2) If α & β are zeroes of 2x² - 5x + 3, then find the values of 1/2α + 1/2β.
A2) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : 1/2α + 1/2β = (β + α)/2αβ → (equation 1)
{Hint : use the LCM}
Step-4 : ⇒1/2α + 1/2β = (___)/2(__)
{Hint : substitute values from Step-2 in equation 1 & solve}
Q3) If α & β are zeroes of 2x² - 5x + 3, then find the values of α/β + β/α.
A3) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : α/β + β/α = (α² + β²)/αβ → (equation 1)
{Hint : use the LCM}
Step-4 : ⇒α/β + β/α = (_____)/(__)
{Hint : substitute value of αβ from Step-2 & value of (α² + β²) from
Q1 & solve}
Q4) If α & β are zeroes of 2x² - 5x + 3, then find the values of α³ + β³.
A4) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α + β)³ = α³ + β³ + 3αβ(α + β)
⇒(α + β)³ - 3αβ(α + β) = α³ + β³ → (equation 1)
{Hint : use the algebraic identity and then transfer 3αβ(α + β) to
LHS}
Step-4 : ⇒(___)³ - 3(___)(___) = α³ + β³
{Hint : substitute values from Step-2 in equation 1 & solve}
Q5) If α & β are zeroes of 2x² - 5x + 3, then find the values of α⁴ + β⁴.
A5) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α + β)⁴ = ((α + β)²)²
= (α² + β² + 2αβ)²
⇒(α + β)⁴ = α⁴ + β⁴ + 4α²β² + 4α³β + 4αβ³ + 2α²β²
⇒(α + β)⁴ = α⁴ + β⁴ + 6(αβ)² + 4αβ(α² + β²)
⇒(α + β)⁴ - 6(αβ)² - 4αβ(α² + β²)= α⁴ + β⁴→ (equation 1)
{Hint : use the algebraic identity and then transfer
6(αβ)² , 4αβ(α² + β²) to LHS}
Step-4 : ⇒(____)⁴ - 6(__)² - 4(__)(____)= α⁴ + β⁴
{Hint : substitute values from Step-2 & from Q1, in equation 1 &
solve}
Q6) If α & β are zeroes of 2x² - 5x + 3, then find the values of α - β.
A6) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α - β)² = α² + β² - 2αβ
{Hint : use the algebraic identity}
⇒(α - β)² = α² + β² + 2αβ - 2αβ - 2αβ
{Hint : add 2αβ and subtract 2αβ}
⇒(α - β)² = (α² + β² + 2αβ) - 4αβ
{Hint : Rearranging}
⇒(α - β)² = (α + β)² - 4αβ → (equation 1)
{Hint : use the algebraic identity}
Step-4 : ⇒(α - β)² = (___)² - 4(___)
{Hint : substitute values from Step-2 in equation 1 & solve. After that take square root of the obtained value to get the value for (α - β)}
Tomorrow i am going to take a google meet with you to explain lecture 4 & 5. plz be on time. link i will give you through whatsapp. tomorrow have single period,so till 7:35am.
HOME WORK:
Q7) If α & β are zeroes of x² - x - 6, then find the values of :
(i) α² + β²
(ii) 1/2α + 1/2β
(iii) α/β + β/α
(iv) α³ + β³
(v) α⁴ + β⁴
(vi) α - β
Take Care of yourselves!
Help the Family at home!
Greet Everyone at home with your cheering smile
A1) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α + β)² = α² + β² + 2αβ
⇒(α + β)² - 2αβ = α² + β² → (equation 1)
{Hint : use the algebraic identity and then transfer 2αβ to LHS}
Step-4 : ⇒(___)² - 2(___) = α² + β²
{Hint : substitute values from Step-2 in equation 1 & solve}
Q2) If α & β are zeroes of 2x² - 5x + 3, then find the values of 1/2α + 1/2β.
A2) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : 1/2α + 1/2β = (β + α)/2αβ → (equation 1)
{Hint : use the LCM}
Step-4 : ⇒1/2α + 1/2β = (___)/2(__)
{Hint : substitute values from Step-2 in equation 1 & solve}
Q3) If α & β are zeroes of 2x² - 5x + 3, then find the values of α/β + β/α.
A3) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : α/β + β/α = (α² + β²)/αβ → (equation 1)
{Hint : use the LCM}
Step-4 : ⇒α/β + β/α = (_____)/(__)
{Hint : substitute value of αβ from Step-2 & value of (α² + β²) from
Q1 & solve}
Q4) If α & β are zeroes of 2x² - 5x + 3, then find the values of α³ + β³.
A4) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α + β)³ = α³ + β³ + 3αβ(α + β)
⇒(α + β)³ - 3αβ(α + β) = α³ + β³ → (equation 1)
{Hint : use the algebraic identity and then transfer 3αβ(α + β) to
LHS}
Step-4 : ⇒(___)³ - 3(___)(___) = α³ + β³
{Hint : substitute values from Step-2 in equation 1 & solve}
Q5) If α & β are zeroes of 2x² - 5x + 3, then find the values of α⁴ + β⁴.
A5) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α + β)⁴ = ((α + β)²)²
= (α² + β² + 2αβ)²
⇒(α + β)⁴ = α⁴ + β⁴ + 4α²β² + 4α³β + 4αβ³ + 2α²β²
⇒(α + β)⁴ = α⁴ + β⁴ + 6(αβ)² + 4αβ(α² + β²)
⇒(α + β)⁴ - 6(αβ)² - 4αβ(α² + β²)= α⁴ + β⁴→ (equation 1)
{Hint : use the algebraic identity and then transfer
6(αβ)² , 4αβ(α² + β²) to LHS}
Step-4 : ⇒(____)⁴ - 6(__)² - 4(__)(____)= α⁴ + β⁴
{Hint : substitute values from Step-2 & from Q1, in equation 1 &
solve}
Q6) If α & β are zeroes of 2x² - 5x + 3, then find the values of α - β.
A6) Step-1 : a = ___, b = ___, c = ___
{Hint : write the coefficients of the given polynomial}
Step-2 : α + β = ___, αβ = ___
{Hint : use the relationship equations}
Step-3 : (α - β)² = α² + β² - 2αβ
{Hint : use the algebraic identity}
⇒(α - β)² = α² + β² + 2αβ - 2αβ - 2αβ
{Hint : add 2αβ and subtract 2αβ}
⇒(α - β)² = (α² + β² + 2αβ) - 4αβ
{Hint : Rearranging}
⇒(α - β)² = (α + β)² - 4αβ → (equation 1)
{Hint : use the algebraic identity}
Step-4 : ⇒(α - β)² = (___)² - 4(___)
{Hint : substitute values from Step-2 in equation 1 & solve. After that take square root of the obtained value to get the value for (α - β)}
Tomorrow i am going to take a google meet with you to explain lecture 4 & 5. plz be on time. link i will give you through whatsapp. tomorrow have single period,so till 7:35am.
HOME WORK:
Q7) If α & β are zeroes of x² - x - 6, then find the values of :
(i) α² + β²
(ii) 1/2α + 1/2β
(iii) α/β + β/α
(iv) α³ + β³
(v) α⁴ + β⁴
(vi) α - β
Help the Family at home!
Greet Everyone at home with your cheering smile
GOOD MORNING MAM
ReplyDeleteGOOD MORNING MA'AM
ReplyDeletetomorrrow google meet in the maths period to learn cubic polynomial. be on time. after 7:35am, no entry.
ReplyDelete👍
DeleteIt will be good if you give the google meet link on blog only as my device having whattsapp is not working.🙏🙏
ReplyDelete