REAL NUMBERS(LECTURE 8) & STATISTICS (LECTURE 1)

Real Numbers (Worksheet Queries) & STATISTICS (Introduction)_CLASS 10

LESSON 8, Day-2, 

Good Morning  !

Hope you have completed the worksheet (Real numbers) that was given to you on 1st April 2020! ๐Ÿ˜€

Let us spend some time in clarifying any doubts !!




  • take your SET-A Mathematics Note Book
  • Our handwriting reflects a lot about us. It will be awesome if you use good presentation and cursive hand writing. Hope you are at it !!
  • Make a column on the right hand side, if you need to do any rough work
  • Leave two lines where you finished yesterday’s work and draw a horizontal line. Recall SDG-12 (turn the leaves of your notebooks to read that!) Thank you๐Ÿ˜„
  • Write today's date on the line after that. 


  • Now Queries (if any...)

    Re posting the worksheet Questions and Answers from the worksheet for you ๐Ÿ‘‡




    REAL NUMBERS {assignment based on Board papers)

    Q1) Prove that √2 is irrational                                                                       [CBSE 2008,2019]

    A1) Refer to pg 12 (thm 1.4)

    Q2) Prove that the following are irrationals:-
      (i) 2- √3          (ii) 5-2√3                                                                                          [CBSE 2008]
       (iii) 3-5√2        (iv) 4-5√3         (v) 7+3√2                                                              [CBSE 2010]
    A2i)   Let 2 - √3   =  p/q , {where p & q are coprime Z,q ≠ 0}
              ⟹  √3   =  2 - p/q
              ⟹  √3   =  (2q - p) /q
               Now p & q are Q no.s , ⟹ (2q - p) /q   ⟹  √3  is also a Q no.
               BUT , WE KNOW THAT √3  is an irrational no.
                ⟹  Contradiction ⟹  (2- √3 )  is an irrational no.

    A2iv)  Let 4 - 5√3   =  p/q , {where p & q are coprime Z,q ≠ 0}
             ⟹   5√3   =  4 - p/q
             ⟹   5√3   =  (4q - p) /q
             ⟹   √3   =  (4q - p) / 5q
             ⟹    Now p & q are Q no.s , ⟹ (4q - p) / 5q   ⟹  √3  is also a Q no.
               BUT , WE KNOW THAT √3  is an irrational no.
                ⟹  Contradiction ⟹  (4 - 5√3 )  is an irrational no.

    If you have any query in any other part of Q2, please ask in the comment below !


    Q3)  Find the HCF of 1260 and 7344 using Euclid’s algorithm.                            [CBSE 2019]
    A3)  Let a = 7344 , b = 1260
            Applying Euclid's Division Algorithm ๐Ÿ‘‡
            7344 = 1260 ⨯ 5 + 1044
            1260 = 1044 ⨯ 1 + 216
            1044 = 216 ⨯ 4 +  180
            216 = 180 ⨯ 1 + 36
            180 = 36 ⨯ 3  + 0
            ⟹ HCF (7344, 1260) = 36


    Q4) Use Euclid’s  division Lemma to show that the cube of any positive integer is of the form 9q or 9q +1 or 9q+8 for some integer q.                                                                     [CBSE 2009 c]
    A4)  Refer to Solution covered in Lesson 6


    5) Show that one and only one out of n, n+2,n+4 is divisible by 3, where n is any positive integer.                                                                                                                      [CBSE 2008C]


    Q6)  Use Euclid’s  division Lemma to show that the square of any positive integer is either of the form 3m or 3m+1 for some integer m.                                                                   [CBSE 2008]
    A6)  Refer to Solution covered in Lesson 6

    Q7)  Show that every positive odd integer is of the form (4q+ 1) or (4q+ 3), where  q is some integer.                                                                                                                       [CBSE 2019]
    A7)  Refer to Eg 3 on pg 6 of NCERT

    Q8)  Show that (3 +√7)/5 is an irrational number, given that √7 is irrational.      [CBSE 2019]
    A8)  Similar to Q2 explained above

    Q9)   Prove that(n2 + n) is divisible by 2 for any positive integer n.                       [CBSE 2019C]
    A9)   (n2 + n)  = n(n + 1)
             "n" and "(n+1)" are two consecutive numbers
               Case 1 : Let n be an even number , then (n + 1) is an odd number.
                             Product of even and odd is always even .
                              ⟹ (n2 + n) is divisible by 2
                Case 2 : Let n be an odd number , then (n + 1) is an even number.
                             Product of even and odd is always even .

                              ⟹ (n2 + n) is divisible by 2
           ⟹ There were only two possibilities and in both cases the                 result has been verified.  Hence Proved
    Q10)  Prove that (2 +√3)/5 is an irrational number, given that √3 is irrational.    [CBSE 2019]
    A10)   Similar to Q2 explained above

    Just reminding you about the important life skill that we learnt in lesson 4: "Assume & Examine and only then make your Perception"  



    HOME WORK: Revisit all the words that you have written in the diary



      After you have, completed your incomplete home work,
      Please turn to fresh page and write "STATISTICS"

      Learning Outcomes

      I will be able to  :                                               
      • Recall the different ways in which data be written.         
      • Recall the 3 measures of central tendencies.
      Click on the link given below to initiate talk about "DATA"

      Intro to Stats-1


      Q1)  State a few examples of Raw data.

      Q2)  State a few examples of Processed data.  

      Click on the link given below to discuss what you have written in your answers

      Discussion for Q1 and Q2


      Example of Ungrouped data : ๐Ÿ‘‡



      Example of Grouped data : ๐Ÿ‘‡






      That will be all for today !

      Good Morning and Thank you boys !  ๐Ÿ˜Š

      See you in the next class tomorrow

      Take a good care of yourselves !

      Comments

      1. good morning ma'am
        -yashvardhan chaudhary 10b

        ReplyDelete
      2. Good morning ma'am
        - Aatman Gupta

        ReplyDelete
      3. Good morning mam Yashvardhan Singh 10B here

        ReplyDelete
      4. Good morning ma'am
        Daksh Mahajan 10-B

        ReplyDelete
      5. This comment has been removed by the author.

        ReplyDelete
      6. Good Morning Ma'am
        Aniruddha Majumdar 10 B

        ReplyDelete
      7. Good Morning Ma am
        Aaron De Menezes 10-B

        ReplyDelete
      8. Ma'am if all class sizes are equal then will the formula (to calculate mode of grouped data) work ?
        -Joe Mathew
        (Joe could not comment so he asked me to do it)

        ReplyDelete
      9. Good morning ma'am
        Sanyam S Sahoo
        10B ๐Ÿ™

        ReplyDelete

      Post a Comment

      Popular posts from this blog

      STATISTICS: MEDIAN 1(LECTURE 5)

      STATISTICS: MEDIAN 2(LECTURE 6)

      STATISTICS (LECTURE 7)